铝合金铸造工艺]铝合金铸造工艺简介doc_铝合金低压铸造工艺_bob电子娱乐官网_pg电子娱乐十大平台
产品介绍

  [铝合金铸造工艺]铝合金铸造工艺简介 [铝合金铸造工艺]铝合金铸造工艺简介 篇一 : 铝合金铸造工艺简介 铝合金铸造工艺简介 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所不能够比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均不一样,结晶过程也不完全一样。,)故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本 因素为浇注温度及浇注压力的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺外,还必须改善铸型工艺性,并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ?体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在 铸件顶部或截面厚大的热节处。[)分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。 缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,铸造铝合金凝固范围越小,越易形成集中 缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。 ?线收缩 线收缩大小将直接影响铸件的质量。线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。 对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。应根据详细情况而定。 热裂性 铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。 不同铝合金铸件产生裂纹的倾向也不同,是因为铸铝合金凝固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同。生产中常采用退让性铸型,或改进铸铝合金的浇注系统等措施,使铝铸件避免产生裂纹。一般会用热裂环法检测铝铸件热裂纹。 气密性 铸铝合金气密性是指腔体型铝铸件在高压气体或液体的作用下不渗漏程度,气密性实际上表征了铸件内部组织致密与纯净的程度。 铸铝合金的气密性与合金的性质有关,合金凝固范围越小,产生疏松倾向也越小,同时产生析出性气孔越小,则合金的气密性就越高。同一种铸铝合金的气密性好坏,还与铸造工艺有关,如降低铸铝合金浇注温度、放置冷铁以加快冷却速度以及在压力下凝固结晶等,均可使铝铸件的气密性提高。也可用浸渗法堵塞泄露空隙来提高铸件的气密性。 铸造应力 铸造应力包括热应力、相变应力及收缩应力三种。各种应力产生的原因不完全一样。 ?热应力 热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的。 吸气性 铝合金易吸收气体,是铸造铝合金的主要特性。液态铝及铝合金的组分与炉料、有机物燃烧产物及铸型等所含水分发生反应而产生的氢气被铝液体吸收所致。 铝合金熔液温度越高,吸收的氢也越多;在700?时,每100g铝中氢的溶解度为0.5,0.9,温度上升到850?时,氢的溶解度增加2,3倍。当含碱金属杂质时,氢在铝液中的溶解度明显地增加。 铸铝合金除熔炼时吸气外,在浇入铸型时也会产生吸气,进入铸型内的液态金属随温度下降,气体的溶解度下降,析出多余的气体,有一部分逸不出的气体留在铸件内形成气孔,这就是通常称的“针孔”。气体有时会与缩孔结合在一起,铝液中析出的气体留在缩孔内。若气泡受热产生的压力很大,则气孔表面十分光滑,孔的周围有一圈光亮层;若气泡产生的压力小,则孔内表面多皱纹,看上去如“苍蝇脚”,仔仔细细地观察又具有缩孔的特征。 铸铝合金液中含氢量越高,铸件中产生的针孔也越多。铝铸件中针孔不仅降低了铸件的气密性、耐蚀性,还降低了合金的力学性能。要获得无气孔或少气孔的铝铸件,重点是熔炼条件。若熔炼时添加覆盖剂保护,合金的吸气量大为减少。对铝熔液作精炼处理,可有效控制铝液中的含氢量。 二、砂型铸造 采用砂粒、粘土及其他辅助材料制造成铸型的铸造方法称为砂型铸造。砂型的材料统称为造型材料。有色金属应用的砂型由砂子、粘土或其他粘结剂和水配制而成。 铝铸件成型的过程是金属与铸型相互作用的过程。砂的配比、造型及浇注等工艺。 三、金属型铸造 1、简介及工艺流程 金属型铸造又称硬模铸造或永久型铸造,是将熔炼好的铝合金浇入金属型中获得铸件的方法,铝合金金属型铸造大多采用金属型 芯,也可采用砂芯或壳芯等方法,与压力铸造相比,铝合金金属型常规使用的寿命长。 2、铸造优点 优点 金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能比砂型铸造高15%左右。 金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低。 劳动条件好,生产率高,工人易于掌握。 缺点 金属型导热系数大,充型能力差。 金属型本身无透气性。一定要采取相应措施才能有效排气。 金属型无退让性,易在凝固时产生裂纹和变形。 3、金属型铸件常见缺陷及预防 针孔 预防产生针孔的措施: 严禁使用被污染的铸造铝合金材料、沾有有机化合物及被严重氧化腐蚀的材料。 控制熔炼工艺,加强除气精炼。 控制金属型涂料厚度,过厚易产生针孔。 模具温度不宜太高,对铸件厚壁部位采用激冷措施,如镶铜块或浇水等。 采用砂型时严格控制水分,尽量用干芯。 气孔 预防气孔产生的措施: 修改不合理的浇冒口系统,使液流平稳,避免气体卷入。 模具与型芯应预先预热,后上涂料,结束后必须要烘透方可使用。 设计模具与型芯应考虑足够的排气措施。 氧化夹渣 预防氧化夹渣的措施: 严格控制熔炼工艺,快速熔炼,减少氧化,除渣彻底。Al,Mg合金必须在覆盖剂下熔 炼。,) 熔炉、工具要清洁,不得有氧化物,并应预热,涂料涂后应烘干使用。 设计的浇注系统必须有稳流、缓冲、撇渣能力。 采用倾斜浇注系统,使液流稳定,不产生二次氧化。 选用的涂料粘附力要强,浇注过程中不产生剥落而进入铸件中形成夹渣。 热裂 预防产生热裂的措施: 实际浇注系统时应避免局部过热,减少内应力。 模具及型芯斜度必须保证在2?以上,浇冒口一经凝固即可抽芯开模,必要时可用砂芯代替金属型芯。 控制涂料厚度,使铸件各部分冷却速度一致。 根据铸件厚薄情况选择适当的模温。 细化合金组织,提高热裂能力。 改进铸件结构,消除尖角及壁厚突变,减少热裂倾向。 疏松 预防产生疏松的措施: 合理冒口设置,保证其凝固,且有补缩能力。 适当调低金属型模具工作温度。 控制涂层厚度,厚壁处减薄。 调整金属型各部位冷却速度,使铸件厚壁处有较大的激冷能力。 适当降低金属浇注温度。 二、砂型铸造 采用砂粒、粘土及其他辅助材料制成铸型的铸造方法称为砂型铸造。砂型的材料统称为造型材料。有色金属应用的砂型由砂子、粘土或其他粘结剂和水配制而成。 铝铸件成型过程是金属与铸型相互作用的过程。铝合金液注入铸型后将热量传递给铸型,砂模铸型受到液体金属的热作用、机械作用、化学作用。因此要获得优质的铸件除严格掌握熔炼工艺外,还必须正确设计型砂的配比、造型及浇注等工艺。 三、金属型铸造 1、简介及工艺流程 金属型铸造又称硬模铸造或永久型铸造,是将熔炼好的铝合金浇入金属型中获得铸件的方法,铝合金金属型铸造大多采用金属型 芯,也可采用砂芯或壳芯等方法,与压力铸造相比,铝合金金属型使用寿命长。 2、铸造优点 优点 金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能比砂型铸造高15%左右。 金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低。 劳动条件好,生产率高,工人易于掌握。 缺点 金属型导热系数大,充型能力差。,) 金属型本身无透气性。必须采取对应措施才能够有效排气。 金属型无退让性,易在凝固时产生裂纹和变形。 3、金属型铸件常见缺陷及预防 针孔 预防产生针孔的措施: 严禁使用被污染的铸造铝合金材料、沾有有机物及被严重氧化腐蚀的材料。 控制熔炼工艺,加强除气精炼。 控制金属型涂料厚度,过厚易产生针孔。 模具的温度不宜太高,对铸件厚壁部位采用激冷措施,如镶铜块或浇水等。 采用砂型时严控水分,尽量用干芯。 气孔 预防气孔产生的措施: 修改不合理的浇冒口系统,使液流平稳,避免气体卷入。 模具与型芯应预先预热,后上涂料,结束后必须要烘透方可使用。 设计模具与型芯应考虑足够的排气措施。 氧化夹渣 预防氧化夹渣的措施: 严控熔炼工艺,快速熔炼,减少氧化,除渣彻底。Al,Mg合金必须在覆盖剂下熔炼。 熔炉、工具要清洁,不得有氧化物,并应预热,涂料涂后应烘干使用。 设计的浇注系统必须有稳流、缓冲、撇渣能力。 采用倾斜浇注系统,使液流稳定,不产生二次氧化。 选用的涂料粘附力要强,浇注过程中不产生剥落而进入铸件中形成夹渣。 热裂 预防产生热裂的措施: 实际浇注系统时应避免局部过热,减少内应力。 模具及型芯斜度一定要保证在2?以上,浇冒口一经凝固即可抽芯开模,必要时可用砂芯代替金属型芯。 控制涂料厚度,使铸件各部分冷却速度一致。 根据铸件厚薄情况选择适当的模温。 细化合金组织,提高热裂能力。 改进铸件结构,消除尖角及壁厚突变,减少热裂倾向。 疏松 预防产生疏松的措施: 合理冒口设置,保证其凝固,且有补缩能力。 适当调低金属型模具工作时候的温度。 控制涂层厚度,厚壁处减薄。 调整金属型各部位冷却速度,使铸件厚壁处有较大的激冷能力。 适当降低金属浇注温度。 三深孔的镗铰加工 深孔精密加工一直是孔加工中的难题。[)设计新结构的刀具和工艺系统是改善深孔精密加工效果的有效方法。 针对材料为40Cr钢、长度为2800mm、孔径为?65+0.08mm、表面粗糙度为Ra0.8μm、直线mm的缸体内孔精密加工,研制了整套自导向镗铰刀及其工艺系统,经生产验证,加工效果较好。 1 自导向镗铰刀 自导向镗铰刀的结构如图1所示。所用刀片材料为YW1,用楔块压紧在刀体上;导向体材料为T15,其外圆比刀片部位略小0.04,0.06mm。刀片和导向套的外圆表面均需研磨,使其表面粗糙度比工件加工后的孔壁粗糙度要求至少高一级以上。导向体内孔两端有材料为ZQSn10-1的衬套,衬套内孔与刀体为间隙配合。刀体、导向套、单向推力球轴承和锁紧螺母组装后,要求导向体及单向推力球轴承转动灵活,无轴向窜动;将镗铰刀顶装在偏摆仪上,用百分表检查,其刀片部位和径向全跳动应不大于0.01mm,导向体绕刀体转动时的径 向全跳动应不大于0.02mm。 图1 自导向镗铰刀 镗铰刀刀片的主要参数为:刃倾角λ=3?,前角γ=0?,3?,后角α=5?,8?,切削刃棱宽f1=0.05,0.08mm,导向刃棱宽f2=0.2,0.25mm。 镗铰内孔时,刀具的断屑性能至关重要。如果切屑经常缠绕在镗杆或刀具上,就可能损坏刀片,损伤已加工表面,且易堵塞出油管。因此,进行深孔镗铰加工时一定要保证断屑稳定可靠,即加工时切屑应定向流出,先卷曲后折断。为此需在刀片前角处磨出一月牙洼状的断屑槽,使切屑卷成小卷,并越卷越大,直至受刀具前面和切屑表面的挤推而弯曲折断。月 牙洼槽可在工具磨床上磨制,然后用20%白泥加80%碳化硅粉用水调成糊状作为研磨剂,用圆弧半径为1,1.5mm的铸铁研磨轮研磨15,30秒钟,即可达到要求。,)月牙洼槽的主要参数为:倒棱宽度f=0.55,0.85mm,槽宽B=1.3,1.5mm。 镗铰刀开始加工时,导向体对刀体可相对转动,因拉刀切削而产生的轴向力由单向推力球轴承承担,导向体与被加工孔壁保持滚动摩擦状态。我们过去设计的镗铰刀没有可转动导向体,而是在刀体外圆表面上布置了三处导向块,由于导向块太短,切削时,与已加工孔壁处于滑动摩擦状态,导致孔壁因不规则的周期性硬挤压而出现黑色条纹,未被挤压部位则呈现灰白色条纹。由此使加工后的孔壁全长表 面形成明暗相间、有一定宽度的环状条纹。通过改进设计,采用可转动导向体后,加工后孔壁环状条纹消失,呈现出均匀光滑的黑色表面。 采用该镗铰刀加工时,切削参数为:转速n=100,120r/min,切深t=1.5,2.5mm,走刀量S=0.3,0.5mm/min。 2 深孔镗铰工艺系统 深孔镗铰工艺系统如图2所示。该系统可安装在加长的普通车床或卧式镗床上进行加工。首先将工件上的孔粗钻至?77mm;然后用两个V形块装夹工件,两端的固定圈用螺栓与工件外圆紧固,再将端盖、O形密封圈用内六角螺钉与固定圈紧固;最后从右端将镗杆连同镗铰刀一起送进,镗杆穿过衬套后,镗杆端头插入万向节套,用锥销锁定,再把定位套连导套一起套上镗铰刀,将定位套与右端固定圈连接紧固。安装完毕后,启动油泵电机,将冷却油泵入工件内孔,然后启动机床,镗杆旋转,开始进行切削加工。油泵参数为:压力8MPa,流量12l/min。冷却液为硫化油。冷却油除起到冷却刀具的作用外,还可在刀片、导向体与已加工孔壁之间起到润滑作用,可减小摩擦,并将切屑从左端出油管强行排出。 图2 深孔镗铰工艺系统 该工艺系统的工件进给方向为向右移动,属拉力切削方式。与推力切削相比,其镗杆、镗铰刀不承受轴向推力,故振动明显减小,刀片不易崩刃。刀具进入被加工孔时,刀片的导向刃可起到导向作用,刀片导向刃和转动体始终支撑在被加工孔的孔壁上,可平衡切削产生 的径向切削分力,引导刀具顺利入孔,并可增强镗杆的动态刚度,确保已加工孔的轴线不偏向,从而提高深孔的直线度。刀片导向刃的另一作用是对孔壁起到挤压作用。在加工中,导向刃在切削力作用下,挤压被加工孔的孔壁,使其产生剧烈的弹塑性变形,从而熨平因切削加工形成的表面刀纹,降低孔的表面粗糙度值。此外,在导向刃与孔壁的强挤压接触区,挤压温度很高,可使金属发生相变。由于导向刃的作用,导致孔壁附近金属层里的金相纤维拉长,晶格畸变。在充分冷却润滑条件下,表层金属急骤冷却形成冷作硬化层,并在孔的表层 金属基体内产生残余应力,从而提高了孔壁表层的金属强度。由此可知,深孔加工的质量并非只取决于刀具切削刃的加工状况,而是与刀刃的切削、导向刃的表面挤压及导向体的支承等均有很大关系。 在深孔加工中,由于镗杆较细长,其扭转振动将直接影响加工精度、刀具耐用度和切削效率。如能有效控制镗杆振动,即可提高深孔加工精度。我们研制的自导向镗铰刀上有切削刃、导向刃和滚动导向体,工件左端又有轴衬可支承镗杆,并采用拉力切削方式,从而有效解决了镗杆振动问题,提高了深孔加工精度和孔壁表面质量。 3 加工效果 采用自导向镗铰刀及其工艺系统对缸体孔进行加工后,经检测,工件孔壁表面呈现均匀的黑色光亮表面,表面粗糙度可达Ra0.8μm,孔的尺寸偏差范围为0.02,0.05mm,孔的直线度用止、通量规检验合格。进一步采用测微法测量孔的直线度:先将工件孔调平, 在孔的端口将指示器调零后,沿其垂直截面的素线进行测量,因孔较深,指示器只能从端口探入孔中约300mm,经测量若干截面后,取其最大误差值作为直线mm,全长直线mm。刀具耐用度可加工3个工件。每加工完一件工件后,必须用金刚石油石精研刀片刃口,若发现刀片崩刃且经研磨无效时,应及时更换刀片。在加工过程中,若出现断屑不良或因切屑堵塞造成加工中断,应及时退出刀具进行清理。此外,断屑槽的磨制质量也直接影响断屑效果,因此应严格按照设计要求磨制断屑槽。 篇二 : 铝合金铸造工艺简介 铝合金铸造工艺简介 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺外,还必须改善铸型工艺性,并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ?体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在 铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。 缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。 ?线收缩 线收缩大小将直接影响铸件的质量。线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。 对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。应根据具体情况而定。 热裂性 铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。 不同铝合金铸件产生裂纹的倾向也不同,这是因为铸铝合金凝 固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同。生产中常采用退让性铸型,或改进铸铝合金的浇注系统等措施,使铝铸件避免产生裂纹。通常采用热裂环法检测铝铸件热裂纹。 气密性 铸铝合金气密性是指腔体型铝铸件在高压气体或液体的作用下不渗漏程度,气密性实际上表征了铸件内部组织致密与纯净的程度。 铸铝合金的气密性与合金的性质有关,合金凝固范围越小,产生疏松倾向也越小,同时产生析出性气孔越小,则合金的气密性就越高。同一种铸铝合金的气密性好坏,还与铸造工艺有关,如降低铸铝合金浇注温度、放置冷铁以加快冷却速度以及在压力下凝固结晶等,均可使铝铸件的气密性提高。也可用浸渗法堵塞泄露空隙来提高铸件的气密性。 铸造应力 铸造应力包括热应力、相变应力及收缩应力三种。各种应力产生的原因不尽相同。 ?热应力 热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的。在薄壁处形成压应力,导致在铸件中残留应力。 ?相变应力 相变应力是由于某些铸铝合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化。主要是铝铸件壁厚不均,不同部位在不同时间内发生相变所致。 ?收缩应力 铝铸件收缩时受到铸型、型芯的阻碍而产生拉应力所致。这种应力是暂时的,铝铸件开箱是会自动消失。但开箱时间不当,则常常会造成热裂纹,特别是金属型浇注的铝合金往往在这种应力作用下容易产生热裂纹。 铸铝合金件中的残留应力降低了合金的力学性能,影响铸件的加工精度。铝铸件中的残留应力可通过退火处理消除。合金因导热性好,冷却过程中无相变,只要铸件结构设计合理,铝铸件的残留应力一般较小。 吸气性 铝合金易吸收气体,是铸造铝合金的主要特性。液态铝及铝合金的组分与炉料、有机物燃烧产物及铸型等所含水分发生反应而产生的氢气被铝液体吸收所致。 铝合金熔液温度越高,吸收的氢也越多;在700?时,每100g铝中氢的溶解度为0.5,0.9,温度升高到850?时,氢的溶解度增加2,3倍。当含碱金属杂质时,氢在铝液中的溶解度显著增加。 铸铝合金除熔炼时吸气外,在浇入铸型时也会产生吸气,进入铸型内的液态金属随温度下降,气体的溶解度下降,析出多余的气体,有一部分逸不出的气体留在铸件内形成气孔,这就是通常称的“针 孔”。气体有时会与缩孔结合在一起,铝液中析出的气体留在缩孔内。若气泡受热产生的压力很大,则气孔表面光滑,孔的周围有一圈光亮层;若气泡产生的压力小,则孔内表面多皱纹,看上去如“苍蝇脚”,仔细观察又具有缩孔的特征。 铸铝合金液中含氢量越高,铸件中产生的针孔也越多。铝铸件中针孔不仅降低了铸件的气密性、耐蚀性,还降低了合金的力学性能。要获得无气孔或少气孔的铝铸件,关键在于熔炼条件。若熔炼时添加覆盖剂保护,合金的吸气量大为减少。对铝熔液作精炼处理,可有效控制铝液中的含氢量。 二、砂型铸造 采用砂粒、粘土及其他辅助材料制造成铸型的铸造方法称为砂型铸造。砂型的材料统称为造型材料。有色金属应用的砂型由砂子、粘土或其他粘结剂和水配制而成。 铝铸件成型的过程是金属与铸型相互作用的过程。铝合金液注入铸型后将热量传递给铸型,砂模铸型受到液体金属的热作用、机械作用、化学作用。因此要获得优质的铸件除严格掌握熔炼工艺外,还必须正确设计型砂的配比、造型及浇注等工艺。 三、金属型铸造 1、简介及工艺流程 金属型铸造又称硬模铸造或永久型铸造,是将熔炼好的铝合金浇入金属型中获得铸件的方法,铝合金金属型铸造大多采用金属型芯,也可采用砂芯或壳芯等方法,与压力铸造相比,铝合金金属型使 用寿命长。 2、铸造优点 优点 金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能比砂型铸造高15%左右。 金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低。 劳动条件好,生产率高,工人易于掌握。 缺点 金属型导热系数大,充型能力差。 金属型本身无透气性。一定要采取相应措施才能有效排气。 金属型无退让性,易在凝固时产生裂纹和变形。 3、金属型铸件常见缺陷及预防 针孔 预防产生针孔的措施: 严禁使用被污染的铸造铝合金材料、沾有有机化合物及被严重氧化腐蚀的材料。 控制熔炼工艺,加强除气精炼。 控制金属型涂料厚度,过厚易产生针孔。 模具温度不宜太高,对铸件厚壁部位采用激冷措施,如镶铜块或浇水等。 采用砂型时严格控制水分,尽量用干芯。 气孔 预防气孔产生的措施: 修改不合理的浇冒口系统,使液流平稳,避免气体卷入。 模具与型芯应预先预热,后上涂料,结束后必须要烘透方可使用。 设计模具与型芯应考虑足够的排气措施。 氧化夹渣 预防氧化夹渣的措施: 严格控制熔炼工艺,快速熔炼,减少氧化,除渣彻底。Al,Mg合金必须在覆盖剂下熔 炼。 熔炉、工具要清洁,不得有氧化物,并应预热,涂料涂后应烘干使用。 设计的浇注系统必须有稳流、缓冲、撇渣能力。 采用倾斜浇注系统,使液流稳定,不产生二次氧化。 选用的涂料粘附力要强,浇注过程中不产生剥落而进入铸件中形成夹渣。 热裂 预防产生热裂的措施: 实际浇注系统时应避免局部过热,减少内应力。 模具及型芯斜度必须保证在2?以上,浇冒口一经凝固即可抽芯开模,必要时可用砂芯代替金属型芯。 控制涂料厚度,使铸件各部分冷却速度一致。 根据铸件厚薄情况选择适当的模温。 细化合金组织,提高热裂能力。 改进铸件结构,消除尖角及壁厚突变,减少热裂倾向。 疏松 预防产生疏松的措施: 合理冒口设置,保证其凝固,且有补缩能力。 适当调低金属型模具工作温度。 控制涂层厚度,厚壁处减薄。 调整金属型各部位冷却速度,使铸件厚壁处有较大的激冷能力。 适当降低金属浇注温度。 二、砂型铸造 采用砂粒、粘土及其他辅助材料制成铸型的铸造方法称为砂型铸造。砂型的材料统称为造型材料。有色金属应用的砂型由砂子、粘土或其他粘结剂和水配制而成。 铝铸件成型过程是金属与铸型相互作用的过程。铝合金液注入铸型后将热量传递给铸型,砂模铸型受到液体金属的热作用、机械作用、化学作用。因此要获得优质的铸件除严格掌握熔炼工艺外,还必须正确设计型砂的配比、造型及浇注等工艺。 三、金属型铸造 1、简介及工艺流程 金属型铸造又称硬模铸造或永久型铸造,是将熔炼好的铝合金浇入金属型中获得铸件的方法,铝合金金属型铸造大多采用金属型芯,也可采用砂芯或壳芯等方法,与压力铸造相比,铝合金金属型使 用寿命长。 2、铸造优点 优点 金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能比砂型铸造高15%左右。 金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低。 劳动条件好,生产率高,工人易于掌握。 缺点 金属型导热系数大,充型能力差。 金属型本身无透气性。必须采取对应措施才能够有效排气。 金属型无退让性,易在凝固时产生裂纹和变形。 3、金属型铸件常见缺陷及预防 针孔 预防产生针孔的措施: 严禁使用被污染的铸造铝合金材料、沾有有机物及被严重氧化腐蚀的材料。 控制熔炼工艺,加强除气精炼。 控制金属型涂料厚度,过厚易产生针孔。 模具的温度不宜太高,对铸件厚壁部位采用激冷措施,如镶铜块或浇水等。 采用砂型时严控水分,尽量用干芯。 气孔 预防气孔产生的措施: 修改不合理的浇冒口系统,使液流平稳,避免气体卷入。 模具与型芯应预先预热,后上涂料,结束后必须要烘透方可使用。 设计模具与型芯应考虑足够的排气措施。 氧化夹渣 预防氧化夹渣的措施: 严控熔炼工艺,快速熔炼,减少氧化,除渣彻底。Al,Mg合金必须在覆盖剂下熔炼。 熔炉、工具要清洁,不得有氧化物,并应预热,涂料涂后应烘干使用。 设计的浇注系统必须有稳流、缓冲、撇渣能力。 采用倾斜浇注系统,使液流稳定,不产生二次氧化。 选用的涂料粘附力要强,浇注过程中不产生剥落而进入铸件中形成夹渣。 热裂 预防产生热裂的措施: 实际浇注系统时应避免局部过热,减少内应力。 模具及型芯斜度一定要保证在2?以上,浇冒口一经凝固即可抽芯开模,必要时可用砂芯代替金属型芯。 控制涂料厚度,使铸件各部分冷却速度一致。 根据铸件厚薄情况选择适当的模温。 细化合金组织,提高热裂能力。 改进铸件结构,消除尖角及壁厚突变,减少热裂倾向。 疏松 预防产生疏松的措施: 合理冒口设置,保证其凝固,且有补缩能力。 适当调低金属型模具工作时候的温度。 控制涂层厚度,厚壁处减薄。 调整金属型各部位冷却速度,使铸件厚壁处有较大的激冷能力。 适当降低金属浇注温度。 三深孔的镗铰加工 深孔精密加工一直是孔加工中的难题。设计新结构的刀具和工艺系统是改善深孔精密加工效果的有效方法。 针对材料为40Cr钢、长度为2800mm、孔径为?65+0.08mm、表面粗糙度为Ra0.8μm、直线mm的缸体内孔精密加工,研制了整套自导向镗铰刀及其工艺系统,经生产验证,加工效果较好。 1 自导向镗铰刀 自导向镗铰刀的结构如图1所示。所用刀片材料为YW1,用楔块压紧在刀体上;导向体材料为T15,其外圆比刀片部位略小0.04,0.06mm。刀片和导向套的外圆表面均需研磨,使其表面粗糙度比工件加工后的孔壁粗糙度要求至少高一级以上。导向体内孔两端有材料为ZQSn10-1的衬套,衬套内孔与刀体为间隙配合。刀体、导向套、单向推力球轴承和锁紧螺母组装后,要求导向体及单向推力球轴承转动灵活,无轴向窜动;将镗铰刀顶装在偏摆仪上,用百分表检查,其刀片部位和径向全跳动应不大于0.01mm,导向体绕刀体转动时的径向全跳动应不大于0.02mm。 图1 自导向镗铰刀 镗铰刀刀片的主要参数为:刃倾角λ=3?,前角γ=0?,3?,后角α=5?,8?,切削刃棱宽f1=0.05,0.08mm,导向刃棱宽f2=0.2,0.25mm。 镗铰内孔时,刀具的断屑性能至关重要。如果切屑经常缠绕在镗杆或刀具上,就可能损坏刀片,损伤已加工表面,且易堵塞出油管。因此,进行深孔镗铰加工时一定要保证断屑稳定可靠,即加工时切屑应定向流出,先卷曲后折断。为此需在刀片前角处磨出一月牙洼状的断屑槽,使切屑卷成小卷,并越卷越大,直至受刀具前面和切屑表面的挤推而弯曲折断。月 牙洼槽可在工具磨床上磨制,然后用20%白泥加80%碳化硅粉用水调成糊状作为研磨剂,用圆弧半径为1,1.5mm的铸铁研磨轮研磨15,30秒钟,即可达到一定的要求。月牙洼槽的主要参数为:倒棱宽度f=0.55,0.85mm,槽宽B=1.3,1.5mm。 镗铰刀开始加工时,导向体对刀体可相对转动,因拉刀切削而产生的轴向力由单向推力球轴承承担,导向体与被加工孔壁保持滚动摩擦状态。我们过去设计的镗铰刀没有可转动导向体,而是在刀体外圆表面上布置了三处导向块,由于导向块太短,切削时,与已加工孔壁处于滑动摩擦状态,导致孔壁因不规则的周期性硬挤压而出现黑色条纹,未被挤压部位则呈现灰白色条纹。由此使加工后的孔壁全长表明产生明暗相间、有一定宽度的环状条纹。通过改进设计,采用可转 动导向体后,加工后孔壁环状条纹消失,呈现出均匀光滑的黑色表面。 采用该镗铰刀加工时,切削参数为:转速n=100,120r/min,切深t=1.5,2.5mm,走刀量S=0.3,0.5mm/min。 2 深孔镗铰工艺系统 深孔镗铰工艺系统如图2所示。该系统可安装在加长的普通车床或卧式镗床上来加工。首先将工件上的孔粗钻至?77mm;然后用两个V形块装夹工件,两端的固定圈用螺栓与工件外圆紧固,再将端盖、O形密封圈用内六角螺钉与固定圈紧固;最后从右端将镗杆连同镗铰刀一起送进,镗杆穿过衬套后,镗杆端头插入万向节套,用锥销锁定,再把定位套连导套一起套上镗铰刀,将定位套与右端固定圈连接紧固。安装好后,启动油泵电机,将冷却油泵入工件内孔,然后启动机床,镗杆旋转,开始做切削加工。油泵参数为:压力8MPa,流量12l/min。冷却液为硫化油。冷却油除起到冷却刀具的作用外,还可在刀片、导向体与已加工孔壁之间起到润滑作用,可减小摩擦,并将切屑从左端出油管强行排出。 图2 深孔镗铰工艺系统 该工艺系统的工件进给方向为向右移动,属拉力切削方式。与推力切削相比,其镗杆、镗铰刀不承受轴向推力,故振动明显减小,刀片不易崩刃。刀具进入被加工孔时,刀片的导向刃可起到导向作用,刀片导向刃和转动体始终支撑在被加工孔的孔壁上,可平衡切削产生的径向切削分力,引导刀具顺利入孔,并可增强镗杆的动态刚度,确 保已加工孔的轴线不偏向,来提升深孔的直线度。刀片导向刃的另一作用是对孔壁起到挤压作用。在加工中,导向刃在切削力作用下,挤压被加工孔的孔壁,使其产生剧烈的弹塑性变形,从而熨平因切削加工形成的表面刀纹,降低孔的表面粗糙度值。此外,在导向刃与孔壁的强挤压接触区,挤压温度很高,可使金属发生相变。由于导向刃的作用,导致孔壁附近金属层里的金相纤维拉长,晶格畸变。在充分冷却润滑条件下,表层金属急骤冷却形成冷作硬化层,并在孔的表层 金属基体内产生残余应力,来提升了孔壁表层的金属强度。由此可知,深孔加工的质量并非只取决于刀具切削刃的加工状况,而是与刀刃的切削、导向刃的表面挤压及导向体的支承等均有很大关系。 在深孔加工中,由于镗杆较细长,其扭转振动将直接影响加工精度、刀具耐用度和切削效率。如能有效控制镗杆振动,即可提高深孔加工精度。我们研制的自导向镗铰刀上有切削刃、导向刃和滚动导向体,工件左端又有轴衬可支承镗杆,并采用拉力切削方式,从而有效解决了镗杆振动问题,提高了深孔加工精度和孔壁表面上的质量。 3 加工效果 采用自导向镗铰刀及其工艺系统对缸体孔来加工后,经检测,工件孔壁表面呈现均匀的黑色光亮表面,表面粗糙度可达Ra0.8μm,孔的尺寸偏差范围为0.02,0.05mm,孔的直线度用止、通量规检验合格。进一步采用测微法测量孔的直线度:先将工件孔调平,在孔的端口将指示器调零后,沿其垂直截面的素线做测量,因孔较 深,指示器只能从端口探入孔中约300mm,经测量若干截面后,取其最大误差值作为直线mm,全长直线mm。刀具耐用度可加工3个工件。每加工完一件工件后,必须用金刚石油石精研刀片刃口,若发现刀片崩刃且经研磨无效时,应按时换刀片。在工艺流程中,若出现断屑不良或因切屑堵塞造成加工中断,应及时退出刀具进行清理。此外,断屑槽的磨制质量也直接影响断屑效果,因此应严格按照设计的基本要求磨制断屑槽。 篇三 : 铝合金铸造工艺 材料成型原理结课论文 课题名称:铝合金铸造工艺 学生姓名: 何 炬 学 号: 1102721433 专 业: 机械设计制造及其自动化 班 级: 机设1109 指导老师: 汪华方 铝合金铸造工艺 摘要:铝合金铸造工艺在我国有着十分广泛的应用:多功能铝合金制造机,铝合金重力 浇注模具,铝合金水冷板,铝合金制造工艺CAD/CAE技术等。 关键词:铝合金铸造工艺;铝合金水冷板;铝合金制造工艺CAD/CAE技术。 铸造铝合金为传统的金属材料,由于其密度小、比强度高等特点,广泛地应用于航空、航天、汽车、机械等各行业。随着现代工业及铸造新技术的发展,对铸造铝合金需求量越来越大[1]。 铸造铝合金的研究一直备受关注,由于铝合金的熔点相对较低,故许多学者以其为对象研究铸造过程的机理。同时,为全面发挥铝合金潜力,在铝合金熔炼工艺及铸造工艺上的研究较多。此外,许多特种铸造铝合金也相继研制出。 多功能铝合金铸造机 铸造机可实现金属型重力铸造,金属型低压铸造、砂犁低压铸造和铝合金熔化功能。该机主要结构包括:主机,熔化保温炉、液压系统,电气控制系统,液面加压系统等[2]。 主机为龙门式结构,所有合型部件安装在静摸板上。水平方向有左,右(后三向抽芯,左右抽芯连板尺寸较大,在重力浇铸时作为合型机构使用。龙门架上装有动模板和反顶出杆。金属犁低压铸造时作为水平分型机构使用,重力铸造时可作为上抽芯使用。整套合型系统可在机架油缸驱动下沿竖直方向移动(以便低压铸造时保温炉的进出。 熔化保温炉采用了坩埚炉,内置不锈钢坩埚,最大容铝量为500kg。加热方式为辐射式阻带加热,额定功率90kw,在满功率t作状态下化铝时间仅需2—3小时。炉体下部装有4个行走轮,在液压缸驱动F可沿水平轨道移动。坩埚卜(配一圆形金属盖板,上面预留一个升液管口和多道T犁槽。当铝锭熔化完毕后(盖上盖板,插入无 保温套的升液管,便形成了一个砂璎低压铸造平台。而插入带保温套的升液管。将炉子移入主机F方,即呵配合合型系统进行金属犁低压铸造。 电气控制系统和液面加压系统控制整套设备的动作及低压浇铸,同时检测设备备部分的位置及连锁情况。工作状态可选择“重力”或“低压”,操作方式分为“点动”,“手动”,“半自动”。“点动”操作时,按下按钮,设备相应部件产生动作,松开按钮,动作停lE;“手动”操作时。按一下按钮,设备相应部件完成一步动作;“半自动”操作时(按下。自动启动”按钮,设备按设定好的程序完成所有动作。 铝合金水冷板 铝合金水冷板是用于某大型计算机上的散热零件,其铝合金基座内穿插导热性极好的铜管,通入冷却水进行冷却。设计要求铸件组织致密,无气孔、缩孔、疏松等铸造缺陷,确保铜管与铝基体紧密接触,无间隙,从而获得最佳的散热效果;为了满足装配要求,需确保管子的直线度及两铜管间距;铸件经,射线探伤,应符合类铸件标准。在铸造水冷板的过程中,我们经历了铜管在浇注过程中的弯曲、熔化、未熔合、气孔等挫折,几经分析研究,不断修改工艺,终于制成了满足铸件技术要求的合格铸件[3]。 铝合金制造工艺CAD/CAE技术 铝合金铸件的质量与铸造因素、合金加热温度、浇冒1=1系统、浇El形状等有关?。铝合金铸造工艺设计是铝合金铸造生产的基本组成部分和关键环节。长期以来。主要靠工艺设计人员的经验、习惯 进行,难以做到最佳工艺设计(也无法准确、动态地进行分析、预示和控制。铸造工艺CAD辅助设计者完成工艺设计和所有绘图工作,方便、快捷、准确地代 替人工和个人经验来进行铸造工艺设计,能提高设计人员的工作效率。 利用通用的绘图软件自身功能,也可进行铝合金铸造工艺设计。如采用AutoCAD,人们可以完成二维铸造工艺设计。实现红蓝铅笔功能,或利用UG,Pro,E等三维软件完成铸件、铸型等三维实体的建模。但铝合金铸造工艺设计中[4]。有许多需要查表、计算的地方,而且,每个企业有自己经常使用的铸造工艺,如冒口、浇注系统、冷铁等,形状和摆放位置、方式都相对固定。这些重复性大的工作,可以基于通用绘图软件进行二次开发。以实现专业铸造工艺设计功能。在开发的过程中利用了计算机数据库技术和计算机图形技术。设计人员在CAD平台上绘制零件图。然后通过二次开发的一系列算法和程序,以及建立起来的相关数据库,在零件图上将工艺形状逐一添加上去,最终形成所需的铸造工艺图。 目前三维造型理论和实用化技术已Et趋成熟,三维铸造工艺CAD逐渐成为铸造工艺CAD的主流。与二维CAD系统相比,三维工艺CAD系统具有设计结果直观、几何信息完整、可实现数据共享、可方便地生成二维工程图、易于与铸造工艺CAE,CAM系统衔接等优点。 铝合金重力浇铸 众所周知,铝合金铸造是铝加工生产过程中一道非常复杂的工序。铸锭的成形和铸锭的好坏直接影响后续工艺流程和产品的最终组织性能。铝合金铸造分为砂型铸造和金属型铸造,砂型铸造又分为砂型重力铸造和砂型低压铸造,金属铸造又分为金属型重力铸造和金属型低压铸造[5]。 砂型铸造即在砂型中生产铸件的铸造方法。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、 成批生产和大量生产均能适应, 长期以来,一直是铝合金铸造生产中最主要和最基本的工艺方法。 高强韧铸造铝合金材料 在高强韧铸造铝合金的发展过程中,A-U5GT占有重要的地位。A-U5GT是法国人于20世纪初研制成功并投入生产应用的,在目前有代表性的高强韧铸造铝合金中它的历史最久、应用最为广泛。A-U5GT已列入法国国家标准和宇航标准,高纯的这种铝合金具有非常好的力学性能。我国目前没有与它对应的牌号。 美国铝协会牌号201.0和206.0的商业名称是KO-1,是受美国专利保护的牌号,具有非常好的力学性能和抗应力侵蚀的能力。但由于含有0.4%~1.0% 的银,材料成本很高,仅用于军事或其他要求高的领域,限制了其应用场景范围。 在高强韧铸造铝合金领域,我们国家取得了令世界瞩目的成绩。60年代至70年代,北京航空材料研究院研制成功了ZL205A合金[8]。ZL205A合金成分复杂,含有Cu,Mn,Zr,V,Cd,Ti,B等7种合金元素。 ZL205A的抗拉强度为510MPa,是目前强度最高的铸造铝合金材料。ZL205A的强韧性最好,伸长率可达13%。最近,北京航空材料研究院吕杰等研制出一种与ZL205A成分相近、韧性特别好的铸造铝合金材料伸长率达19%~23% ,冲击韧度为181~304KJ/m2。 Al-Mg系合金具有优良的力学性能,高的强度、好的延性和韧性,抗蚀稳定性和切削加工性都好。Mg的质量分数为12%~13%的铝镁合金的力学性能好于ZL301[9],及抗拉强可达295~440MPa,伸长率12%~25%.Al-Mg系合金的主要缺点是裂纹倾向大、易出现氧化夹渣、有自然时效倾向。美国牌号220,和英国牌号LM10与我国ZL301接近。 AL-Si系合金拥有非常良好的铸造性能、好的抗蚀稳定性和中等的切削加工性能,具有一般的强度和硬度,但塑性较低。因此一般而言,AL-Si系合金不是高强韧铝合金。但是,文献报道了一种改良的ZL107[10]合金。与ZL107接近的牌号有美国牌号319和英国牌号LM21[6]。 近年来,铸造铝合金的研究也得到相应的发展,其中发展较为迅速的是铸造铝基复合材料。,华中科技大学。 [5]. 刘树声,何贵元,程俊。关于铝合金重力浇注简易模具之研究,2014。 [6]. 李元元 ,郭国文,罗宗强,龙雁。高强韧铸造铝合金材料研究进展,2000,华南理工大学。 [7]. 熊艳才,刘伯操。铸造铝合金现状及未来发展,1998。 [8]. Davidkow, A.;Jain,M.K.;Petrov,R.H.;WILKinson,D.S.;Mishra,R.K.Strain localization, damage development during bending of AL—Mg Alloy sheets,2012,550. [9]. Amporn wiengmoon; John T.H Pearce; Torranin chairuangsri; Seiji Isoda; Hikaru Saito; Hiroki Kurata, HETEM and HAADF_STEM of precipitates at ageing of cast A319 aluminum alloy, 2013, 45. [10]. Siegfanz, s; Giertler, A; Michels, W.; Krupp, U. Influence of the microstructure on the fatigue damage behavior of the aluminum cast alloy ALSI&Mg0.3,2013,565.

  教师高级职称述职报告 教师高级职称述职报告要求字数多少 (17篇).docx

  加油站经理述职报告 加油站经理述职报告2023年 (17篇).docx

  国家开放大学《学前儿童健康教育活动指导》形成性考核1-4参.docx

  原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者

©2010-2021 bob电子娱乐官网_pg电子娱乐十大平台 版权所有 网站地图
地址:广东省东莞市东城街道基南路7号  电话:0769-82188239 
联系人:陈生 13825731759

粤ICP备13041366号
Powered by PageAdmin CMS